$$\int_{0}^{\frac{\pi}{2}} \theta \log^2(\cos\theta) d\theta$$
$$\log(\sin(\theta)) \cdot \log(\cos(\theta)) = \frac{1}{4} \zeta(3) - \log(2) - \sum_{n=1}^{\infty} f(n) \cos(2n\theta)$$ and then we have
$$\int_{0}^{\frac{\pi}{2}} \left(\frac{1}{4} \zeta(3) - \log^3(2)\right) \theta , d\theta - \int_{0}^{\frac{\pi}{2}} \sum_{n=1}^{\infty} f(n) \theta \cos(2n\theta) , d\theta$$
$$= \frac{3}{16} \zeta(2) \zeta(3) - \frac{3}{4} \log^3(2) \zeta(2) - \sum_{n=1}^{\infty} f(n) \int_{0}^{\frac{\pi}{2}} \theta \cos(2n\theta) , d\theta$$
$$= \frac{3}{16} \zeta(2) \zeta(3) - \frac{3}{4} \log^3(2) \zeta(2) + \frac{1}{4} \sum_{n=1}^{\infty} \frac{1 + (-1)^{n-1}}{n^2} f(n)$$
Take the series amd i expanded the integral of $f(n)$
\begin{align*} &= \frac{3}{16} \zeta(2) \zeta(3) - \frac{3}{4} \log^3 (2) \zeta(2) \ &+ \frac{1}{4} \log^2 (2) \int_{0}^{1} \frac{\text{Li}2(-t)}{t} , dt - \frac{1}{4} \log^2 (2) \int{0}^{1}\frac{\text{Li}_2(t)}{t} , dt \end{align*}