The exterior derivative has nothing to do here. How could a student understand such a proof !
"Did" gave a good answer.
The gradient $\nabla(f)$ of a function $f: E\rightarrow \mathbb{R}$ is defined, modulo a dot product $\langle \cdot, \cdot \rangle$ on the vector-space $E$, by the formula
$$
\langle \nabla(f)(x), h \rangle
= Df_x(h),
$$
where $Df_x$ is the derivative of $f$ in $x$.
Example 1: Let $f:x\in\mathbb{R}^n \rightarrow x^TAx\in\mathbb{R}$.
Then, $Df_x(h)=h^TAx+x^TAh=x^T(A+A^T)h$ (it's the derivative of a non-commutative product!); we consider the dot product $u.v=u^Tv$.
Thus, $Df_x(h)= \langle ((A+A^T)x), h \rangle $ and $\nabla(f)(x)=(A+A^T)x$, that is $\nabla(f)=A+A^T$.
Example 2: Let $f:X\in\mathcal{M}_n(\mathbb{R}) \rightarrow \operatorname{Trace}(X^TAX)\in\mathbb{R}$, where $\mathcal{M}_n(\mathbb{R})$ is the set of all $n \times n$ Matrices on $\mathbb{R}$.
Since Trace is a linear function, we have
$$
Df_X(H)
= \operatorname{Trace}(H^TAX+X^TAH)
= \operatorname{Trace}(X^T(A+A^T)H);
$$
we consider the dot product $\langle U,V \rangle = Trace(U^TV)$.
Thus, $Df_X(H)=\langle ((A+A^T)X), H \rangle$ and $\nabla(f)(X)=(A+A^T)X$, that is $\nabla(f)=(A+A^T)\otimes I$. (Kronecker product).
Example 3 (more difficult): Let $f:X\in\mathcal{M}_n(\mathbb{R}) \rightarrow \det(X)\in\mathbb{R}$.
The we have
$$
Df_X(H)
= \operatorname{Trace}(\operatorname{adjoint}(X)H)
= \langle \operatorname{adjoint}(X)^T, H \rangle
\quad \text{and} \quad
\nabla(f)(X) = \operatorname{adjoint}(X)^T.
$$
Example 4: Let $f:X\in\mathcal{M}_n(\mathbb{R}) \rightarrow X^TAX\in\mathcal{M}_n(\mathbb{R})$.
Then we have $Df_X(H)=H^TAX+X^TAH$. Here the gradient of $f$ does not exist. In a pinch, we can define $n^2$ gradients, the $\nabla(f_{i,j})$ (componentwise) but these functions have no geometric meanings.