Let us start with something a bit more general and consider the sequence
$$
u(n) = \alpha z_1^{n}+\alpha z_2^{n}
$$
where $\alpha=(z_2-1)/(z_2-z_1)$, $\beta=(1-z_1)/(z_2-z_1)$, $z_1>1$, and $z_2<-1$.
From this expression, we obtain
$$
\begin{array}{rcl}
L(n)&:=&\dfrac{u(n+1)}{u(n)}\\
&=&\dfrac{\alpha z_1^{n+1}+\alpha z_2^{n+1}}{\alpha z_1^{n}+\alpha z_2^{n}}\\
%
&=&\dfrac{(z_2-1)z_1^{n+1}+(1-z_1)z_2^{n+1}}{(z_2-1)z_1^{n
}+(1-z_1)z_2^{n}}\\
%
&=&\dfrac{z_1[(z_2-1)z_1^{n}+(1-z_1)z_2^{n}]+(1-z_1)z_2^{n+1}-z_1(1-z_2)z_2^n}{(z_2-1)z_1^{n
}+(1-z_1)z_2^{n}}\\
%
&=&z_1+\dfrac{(1-z_1)z_2^{n+1}-z_1(1-z_2)z_2^n}{(z_2-1)z_1^{n
}+(1-z_1)z_2^{n}}\\
%
&=&z_1+\dfrac{z_2^n(z_2-z_1)}{(z_2-1)z_1^{n
}+(1-z_1)z_2^{n}}\\
%
&=&z_1+\dfrac{(z_2-z_1)}{(z_2-1)\left(\dfrac{z_1}{z_2}\right)^n+(1-z_1)}.
%
\end{array}
$$
Since $z_1>z_2$, we have that $(z_1/z_2)^n\to\infty$ as $n\to\infty$, which implies that $L(n)\to z_1$ as $n\to\infty$.
If we pick $z_1=(1+\sqrt{5})/2$, and $z_2=(1+\sqrt{5})/2$, then the sequence is the Fibonacci sequence and we have that
$$
\lim_{n\to\infty} \dfrac{u(n+1)}{u(n)}=z_1=\dfrac{1+\sqrt{5}}{2}.
$$