Suppose $a_n\geq 0$, $\varlimsup a_n\leq 1$, $l>1$. then prove $\lim_{n\to \infty}\frac{a_n}{l^n}=0$
Below is my idea.
$\log\frac{a_n}{l^n}=\log a_n-n\log l$, then $$\varlimsup \log\frac{a_n}{l^n}=\varlimsup (\log a_n-n\log l) =\log \varlimsup a_n-\lim n\log l \leq -\infty,$$
so
$$0<\lim \frac{a_n}{l^n}\leq \varlimsup \frac{a_n}{l^n}=e^{\varlimsup \log\frac{a_n}{l^n}}=0,$$
beacuse $\log$ is continuous, we can exchange the order of $\log $ and $\varlimsup$.
Is there a problem with this solution? Thanks for your comments!