Since $\boldsymbol{B}, \boldsymbol{A} \in \mathcal{S}_{+}^{n}$ then they can be written as:
$$ \boldsymbol{B} = \boldsymbol{L} \boldsymbol{L}^{T}, \; \boldsymbol{C} = \boldsymbol{R}^{T} \boldsymbol{R} $$
Then it becomes:
$$ \operatorname{Tr} \left( \boldsymbol{A} \boldsymbol{B} \boldsymbol{A}^{T} \boldsymbol{C} \right) = \operatorname{Tr} \left( \boldsymbol{A} \boldsymbol{L} \boldsymbol{L}^{T} \boldsymbol{A}^{T} \boldsymbol{R}^{T} \boldsymbol{R} \right) = \operatorname{Tr} \left( \boldsymbol{R} \boldsymbol{A} \boldsymbol{L} \boldsymbol{L}^{T} \boldsymbol{A}^{T} \boldsymbol{R}^{T} \right) =
\operatorname{Tr} \left( \boldsymbol{R} \boldsymbol{A} \boldsymbol{L} \left( \boldsymbol{R} \boldsymbol{A} \boldsymbol{L} \right)^{T} \right) = {\left\| \boldsymbol{R} \boldsymbol{A} \boldsymbol{L} \right\|}_{F}^{2} $$
Now, $\boldsymbol{R} \boldsymbol{A} \boldsymbol{L}$ is a linear function of $\boldsymbol{A}$ hence the squared Frobenious norm is a convex function of $\boldsymbol{A}$.