1

Let ${\bf A}, {\bf B}, {\bf C}$ be $d \times d$ (symmetric) positive semidefinite matrices. Let $\mbox{Tr}$ denote the trace operator. Is the scalar field ${\bf A} \mapsto \mbox{Tr} \left( {\bf A} {\bf B} {\bf A}^\top {\bf C} \right)$ convex?

I guess it is convex, but could not prove it formally. Is there any idea or reference that I can take a look at?

sabo
  • 35

1 Answers1

3

Since $\boldsymbol{B}, \boldsymbol{A} \in \mathcal{S}_{+}^{n}$ then they can be written as:

$$ \boldsymbol{B} = \boldsymbol{L} \boldsymbol{L}^{T}, \; \boldsymbol{C} = \boldsymbol{R}^{T} \boldsymbol{R} $$

Then it becomes:

$$ \operatorname{Tr} \left( \boldsymbol{A} \boldsymbol{B} \boldsymbol{A}^{T} \boldsymbol{C} \right) = \operatorname{Tr} \left( \boldsymbol{A} \boldsymbol{L} \boldsymbol{L}^{T} \boldsymbol{A}^{T} \boldsymbol{R}^{T} \boldsymbol{R} \right) = \operatorname{Tr} \left( \boldsymbol{R} \boldsymbol{A} \boldsymbol{L} \boldsymbol{L}^{T} \boldsymbol{A}^{T} \boldsymbol{R}^{T} \right) = \operatorname{Tr} \left( \boldsymbol{R} \boldsymbol{A} \boldsymbol{L} \left( \boldsymbol{R} \boldsymbol{A} \boldsymbol{L} \right)^{T} \right) = {\left\| \boldsymbol{R} \boldsymbol{A} \boldsymbol{L} \right\|}_{F}^{2} $$

Now, $\boldsymbol{R} \boldsymbol{A} \boldsymbol{L}$ is a linear function of $\boldsymbol{A}$ hence the squared Frobenious norm is a convex function of $\boldsymbol{A}$.

Royi
  • 8,711