My attempt: $$\int_{1}^{\infty}\frac{\cos(x) dx}{1+x^2} \le \int_{1}^{\infty} \frac{dx}{1+x^2}$$ and the latter integral converges, so $\int_{1}^{\infty}\frac{\cos(x) dx}{1+x^2}$ also converges. And similar argument follows for $\int_{1}^{\infty}\frac{\sin(x) dx}{1+x^2}$.
$ $
Is this correct ? Then, is it true that all integrals bounded from above (strictly or non-strictly) by a finite value converge?