0

Hey I want to check if I have done right the following exercises:

a) Show that the polynomial $P(X)=X^3-2$ is irreducible over $\mathbb{Q}$.

Here I used Eisenstein Criterion with $p=2$.

b) Give the splitting field $L$ of $P(X)$.

Here I wrote $L=\mathbb{Q}(\sqrt[3]{2}, e^{2\pi i/3})$

c) Determine $[L:\mathbb{Q}]$.

$[L:\mathbb{Q}]=[L:\mathbb{Q}(\sqrt[3]{2})][{Q}(\sqrt[3]{2}):\mathbb{Q}] =6$

d) Explain why $L/\mathbb{Q}$ is Galois. Determine the Galois group of the polynomial P(X) and the isomorphism type.

Since $L$ is a splitting field of $P(X)$ and $\text{char}(\mathbb{Q})=0 $ it is Galois.

Since $[L:\mathbb{Q}]=|\text{Gal}(L/\mathbb{Q})|$, we have to find 6 automorphisms that permute the roots of $P(X)$. Here is a table: enter image description here

So we have $Gal(L/\mathbb{Q}) \cong S_3$.

e)Specify all intermediate fields of the extension $L/\mathbb{Q}$.

Using d) here are the intermediate fields: $\mathbb{Q}(\sqrt[3]{2}),\mathbb{Q}(\sqrt[3]{2} e^{2\pi i/3}),\mathbb{Q}(\sqrt[3]{2} (e^{2\pi i/3})^2), \mathbb{Q}( e^{2\pi i/3})$

Have I done everything correctly or is there an error somewhere?

0 Answers0