1

How to solve the following system of equations if $x,y>0$?

$\begin{cases} \sqrt{\sin^{2}x+\frac{1}{\sin^{2}x}}+\sqrt{\cos^{2}y+\frac{1}{\cos^{2}y}}=\sqrt{\frac{20y}{x+y}} \newline \sqrt{\sin^{2}y+\frac{1}{\sin^{2}y}}+\sqrt{\cos^{2}x+\frac{1}{\cos^{2}x}}=\sqrt{\frac{20x}{x+y}} \end{cases}$

I tried graphing this with Desmos and this is what I got.

If I square both the equations I would get

$\begin{cases} \sqrt{\sin^{2}x+\frac{1}{\sin^{2}x}}+\sqrt{\cos^{2}y+\frac{1}{\cos^{2}y}}=\sqrt{\frac{20y}{x+y}}|()^2 \newline \sqrt{\sin^{2}y+\frac{1}{\sin^{2}y}}+\sqrt{\cos^{2}x+\frac{1}{\cos^{2}x}}=\sqrt{\frac{20x}{x+y}}|()^2 \end{cases}$

$\begin{cases} \sin^{2}x+\cos^{2}y+\frac{1}{\cos^{2}y}+\frac{1}{\sin^{2}x}+2\sqrt{\sin^{2}x+\frac{1}{\sin^{2}x}}\sqrt{\cos^{2}y+\frac{1}{\cos^{2}y}}=\frac{20y}{x+y}\newline \sin^{2}y+\frac{1}{\sin^{2}y}+\cos^{2}x+\frac{1}{\cos^{2}x}+2\sqrt{\sin^{2}y+\frac{1}{\sin^{2}y}}\sqrt{\cos^{2}x+\frac{1}{\cos^{2}x}}=\frac{20x}{x+y} \end{cases}$

I don't think this will help in solving the system.

What should I do next?

Birgitt
  • 325
  • 1
  • 8
  • 2
    Duplicate of MSE Q275874. Since there's no posted answer yet on the former, the question can't be closed, but Whuber's comment gives a sufficient hint for solving it. Sum the two equations, observe the symmetry in univariate functions, then minimize them. – Jam Dec 04 '23 at 12:22
  • For your last set of equations, try subtracting them. – Yajat Shamji Dec 27 '23 at 14:31

0 Answers0