I have made numerous attempts to prove that the limit $\lim_{{x \to +\infty}} x(x+1) \ln \left(\frac{x+1}{x}\right) - x$ equals $\frac{1}{2}$ without resorting to Taylor expansion. Unfortunately, all my efforts have ended in failure
Attempt:
Given the original limit:
$\lim_{{x \to +\infty}} x(x+1) \ln \left(\frac{x+1}{x}\right) - x$
Substituting $y = \frac{1}{x}$ gives us:
$\lim_{{y \to 0^+}} \frac{1}{y} \left(\frac{1}{y} + 1\right) \ln \left(\frac{1 + 1/y}{1/y}\right) - \frac{1}{y}$
Simplify this expression:
$\lim_{{y \to 0^+}} \frac{1 + y}{y^2} \ln(y+1) - \frac{1}{y}$
Using L'Hôpital's Rule for the indeterminate form $\infty \cdot 0 - \infty$:
$\lim_{{y \to 0^+}} \frac{\ln(y+1)}{1/y}$
Differentiating the numerator and denominator separately:
$\lim_{{y \to 0^+}} \frac{\frac{1}{y+1}}{-1/y^2}$
Simplify this expression:
$\lim_{{y \to 0^+}} -y = 0$
Therefore, after applying the variable change and using L'Hôpital's Rule, the limit evaluates to $0$.