Question
$$\zeta(k)=1+\dfrac{1}{2^k}+\dfrac{1}{3^k}+\cdots+\dfrac{1}{n^k}+\cdots$$ Prove that : $$\sum_ {k=1}^{\infty}\dfrac{\zeta(2k)-\zeta(3k)}{k}=\ln\left(\frac{2\cosh\left(\sqrt{3}\pi/2\right)}{3\pi}\right).$$
We have $$\begin{align} \sum\limits_{k = 1}^\infty {\frac{{\zeta \left( {2k} \right) - \zeta \left( {3k} \right)}}{k}} &= \sum\limits_{k = 1}^\infty {\frac{1}{k}\left( {\sum\limits_{n = 2}^\infty {\left( {\frac{1}{{{n^{2k}}}} - \frac{1}{{{n^{3k}}}}} \right)} } \right)}\\&= \sum\limits_{n = 2}^\infty {\sum\limits_{k = 1}^\infty {\left( {\frac{1}{{k{n^{2k}}}} - \frac{1}{{k{n^{3k}}}}} \right)} }\\&= \sum\limits_{n = 2}^\infty {\left( { - \ln \left( {1 - \frac{1}{{{n^2}}}} \right) + \ln \left( {1 - \frac{1}{{{n^3}}}} \right)} \right)}\\& = - \ln \frac{3}{2} + \sum\limits_{n = 1}^\infty {\ln \left( {\frac{{{n^2} + n + 1}}{{{n^2} + n}}} \right)}\\&= - \ln \frac{3}{2} + \ln \left( {\prod\limits_{n = 1}^\infty {\frac{{\left( {n - {z_1}} \right)\left( {n - {z_2}} \right)}}{{n\left( {n + 1} \right)}}} } \right) \end{align}$$