Let $a_n > 0$ and let $s_n = a_1 +\dots+ a_n$. Prove
(a) if $\sum a_n$ converges then $\sum \dfrac{ a_n}{s_n}$ converges.
(b) if $\sum a_n$ diverges then $\sum \dfrac{ a_n}{s_n}$ diverges but $\sum \dfrac{ a_n}{s_n^2}$ converges.
Trial: $\sum a_n$ converges to $l$ $\implies |\sum a_n -l|<\epsilon\,\, \forall n \ge N$ and with help of this I need to show $|\sum \dfrac{ a_n}{s_n}-l'|<\epsilon\,\, \forall n \ge N'$. But here I am stuck. Please help.