Show that for $a \neq b$ it holds: $$\frac{e^b-e^a}{b-a} < \frac{e^b+e^a}{2}$$
My first idea was to rearrange $$2 \cdot (e^b-e^a) < (b-a)(e^b+e^a)$$
$$2e^b-2e^a < be^b + be^a - ae^b -e^a$$
And then take the natural logarithm on both sides $$\ln{(2e^b-2e^a)} < \ln{(be^b + be^a - ae^b -e^a)}$$
I'm a bit lost at this point