Use the definition to find $\int_0^2f(x)dx$ where $f (x )=\cases{ 1,&$x \ne 1$\\2,& $x = 1$}$
I am stuck with this question, we studying Riemann integration, in my mind I can do the integral over $[0,1] +[1,2] =[0,2]$
the question is how I set up the integral, I mean i understand $f (x )=\cases{ 1,&$x \ne 1$\\2,& $x = 1$}$., so the first integral $\int_0^1 f(x) dx=x , 1-0 =1$, second integral $\int_1^2 f(x) dx= 2-1=1$, so $\int_0^2 f(x)dx=1+1=2$?
\cup
. $$(0,1)\cup (1,2)=(0,2)\setminus {1}$$ – Nothing special Nov 23 '23 at 18:42