$(S,A,\mu)$ is a measure space
Let $p\in [1,\infty), f \in L^p(S), (f_n)_{n\in N} \subset L^p(S)$ and $\lim_{n\to\infty} ||f_n-f||_p=0 $
prove that for every $\epsilon>0$ there exists a $\delta>0$ with $\mu(A)<\delta \Rightarrow \int_A|f_n|^p d\mu <\epsilon$
............ My first ideas:
$0 \leftarrow_{n\to \infty} ||f_n-f||_p\ge||f_n||_p-||f||_p$
So i have: $\lim_{n\to \infty} ||f_n||_p =||f||_p $
Would be happy about hints where I add $\epsilon$ and $\delta$