After tackling about the Fresnel integral in the post, I want go further with its quadratic as $$ \int_{-\infty}^{\infty} \sin \left(a x^2+b x+c\right) d x $$ where $a,b $ and $c$ are real.
Starting with easy, we first consider the case $a>0$. $$ \begin{aligned} \int_{-\infty}^{\infty} \sin \left(a x^2+b x+c\right) d x = & \int_{-\infty}^{\infty} \sin \left[a\left(x+\frac{b}{2 a}\right)^2+\left(c-\frac{b^2}{2 a}\right)\right] d x \\ = & -\Im\left[\int_{-\infty}^{\infty} e^{-\left[a\left(x+\frac{b}{2 a}\right)^2+\left(c-\frac{b^2}{4 a}\right)\right] i} d x\right. \\ = & -\Im\left[e^{\frac{b^2-4 a c}{4 a}i} \int_{-\infty}^{\infty} e^{-a\left(x+\frac{b}{2 a}\right)^2 i} d x\right]\\ = & -\Im\left[\left(\cos \frac{b^2-4 a c}{4 a}+i \sin \frac{b^2-4 a c}{4 a}\right) \cdot \sqrt{\frac{\pi}{2}} \cdot \frac{1-i}{\sqrt{a}}\right] \cdots(*) \\ = & \sqrt{\frac{\pi}{2 a}}\left(\cos \frac{4ac-b^2}{4 a}+\sin \frac{4ac-b^2}{4 a}\right) \end{aligned} $$ where $(*)$ uses the result :$\int_{-\infty}^{\infty} e^{-k x^2} d x=\sqrt{\frac{\pi}{k}}$.
For $a<0$, we have $$\int_{-\infty}^{\infty} \sin \left(a x^2+b x+c\right) d x =-\int_{-\infty}^{\infty} \sin \left(-a x^2-b x-c\right) d x $$
Replacing $a,b$ and $c$ with $-a, -b$ and $-c$ yields $$\int_{-\infty}^{\infty} \sin \left(a x^2+b x+c\right) d x=-\sqrt{-\frac{\pi}{2 a}}\left(\cos \frac{4ac-b^2}{4 a}-\sin \frac{4ac-b^2}{4 a}\right) $$ Conclusively, $$ \boxed{ \int_{-\infty}^{\infty} \sin \left(a x^2+b x+c\right) d x = \operatorname{sgn} a \sqrt{\frac{\pi}{2|a|}}\left(\cos \frac{4ac-b^2}{4|a|}+\sin \frac{4ac-b^2}{4|a|}\right)} $$
For examples, $$ \begin{aligned} & \int_{-\infty}^{\infty} \sin \left(x^2-1\right) d x=\sqrt{\frac{\pi}{2}}(\cos 1-\sin 1) \\ & \int_{-\infty}^{\infty} \sin \left(x^2+x\right) d x =\sqrt{\frac{\pi}{2}}\left(\cos \frac{1}{4}-\sin \frac{1}{4}\right) \\ & \int_{-\infty}^{\infty} \sin \left(x^2+x+1\right) d x=\sqrt{\frac{\pi}{2}}\left(\cos \frac{3}{4}+\sin \frac{3}{4}\right)\\ & \int_{-\infty}^{\infty} \sin \left(3 x^2+4 x+5\right) d x=\sqrt{\frac{\pi}{6}}\left(\cos \frac{11}{3}+\sin \frac{11}{3}\right) \end{aligned} $$
My question: Can we evaluate the Fresnel integral of a quadratic in general using real methods ? Your comments and alternatives are highly appreciated.