The conditions are equivalent for unital rings (or for rings satisfying $R^2=R$).
Theorem. Let $R$ be a ring such that $R^2=R$, and let $I_1,\ldots,I_m$ be two-sided ideals. The following are equivalent:
- If $i\neq j$, then $I_i+I_j = R$ (the ideals are pairwise coprime);
- For each $j$, $I_j+\cap_{k\neq i}I_k = R$.
Proof. If 2 holds, then
$$R = I_j+\cap_{k\neq i}I_k \subseteq I_j+ I_i \subseteq R,$$
so $I_j+I_i=R$.
Conversely, assume 1 holds. We proceed by induction on $m$. If $m=2$, the two statements are equal.
If $m=3$, and $I_1+I_2 = I_1+I_3 = R$, then
$$\begin{align*}
R=R^2 &= (I_1+I_2)(I_1+I_3)\\
&= I_1I_1 + I_1I_3 + I_2I_1+I_2I_3\\
&\subseteq I_1+I_2I_3\\
& \subseteq I_1+(I_2\cap I_3)\\
&\subseteq R,
\end{align*}$$
so $I_1+(I_2\cap I_3)=R$. Similarly for $I_2+(I_1\cap I_3)$ and $I_3+(I_1\cap I_2)$.
Assume that the result holds for $k$ ideals and $m=k+1$. Then
$$\begin{align*}
R = R^2 &= (I_1+(I_2\cap\cdots\cap I_k))(I_1+I_{k+1})\\
&\subseteq I_1 + (I_2\cap\cdots \cdots \cap I_k)I_{k+1}\\
& \subseteq I_1+\cap_{j=2}^{k+1}I_j\\
&\subseteq R,
\end{align*}$$
so we get the desired equality. $\Box$
You can weaken the condition $R^2=R$ to asking that $R=R^2+I_j$ for each $j$; this is what Hungerford does, for example. In the case of $m=3$, the argument proceeds as follows; as before
$$R^2\subseteq I_1+(I_2\cap I_3).$$
Then we have
$$R = I_1+R^2 \subseteq I_1+(I_1+(I_2\cap I_3)) = I_1+(I_2\cap I_3)\subseteq R,$$
proving the desired equality. The general case proceeds similarly.
This suggests that a problem may arise in a ring in which $R^2\neq R$ (and $R^2+I_j\neq R$ for at least one $j$). If $A$ is an abelian group and we define multiplication to be $ab=0$ for all $a,b\in A$, then ideals correspond to subgroups. We would be looking for three subgroups $B_1,B_2,B_3$ such that any two of them are comaximal, but the intersection of any two is contained in the third. An easy example is the Klein $4$-group $\mathbb{Z}_2\oplus\mathbb{Z}_2$, and take $B_1=\{(0,0),(1,0)\}$, $B_2=\{(0,0),(1,1)\}$, and $B_3=\{(0,0), (0,1)\}$. Then $B_1+B_2=B_1+B_3=B_2+B_3=\mathbb{Z}_2\oplus\mathbb{Z}_2$, but any two of them intersect trivially so $B_j+\cap_{i\neq j}B_i \neq \mathbb{Z}_2\oplus\mathbb{Z}_2$.