My question is about how can reach to the formula $$\frac{dA^{-1}}{dt}=-A^{-1}\frac{dA}{dt}A^{-1}$$ when $A$ is a matrix. It is very similar to $$\frac{dx^{-1}}{dt}=-x^{-2}\frac{dx}{dt}$$And I know we can write $$A^{-1}=A^{-1}I\\A^{-1}=A^{-1}AA^{-1}$$ then it seems to be $$\frac{dA^{-1}}{dt}=\frac{dA^{-1}}{dt}AA^{-1} +A^{-1}\frac{dA}{dt}A^{-1}+A^{-1}A\frac{dA^{-1}}{dt}$$ in this part: how can I simplify right hand side? to obtain $\frac{dA^{-1}}{dt}=-A^{-1}\frac{dA}{dt}A^{-1}$
Any hint will be appreciated.
Asked
Active
Viewed 108 times
3

Khosrotash
- 24,922
-
You can expand $(A + H)^{-1}$ as a geometric series, then the derivative is the first order term. – Kakashi Nov 21 '23 at 23:18
2 Answers
3
from your bottom line: $$\frac{dA^{-1}}{dt}=\frac{dA^{-1}}{dt}I+A^{-1}\frac{dA}{dt}A^{-1}+I\frac{dA^{-1}}{dt} \\=2I\frac{dA^{-1}}{dt}+A^{-1}\frac{dA}{dt}A^{-1}$$ which rearranges to: $$-\frac{dA^{-1}}{dt}=A^{-1}\frac{dA}{dt}A^{-1}$$ which is what you were looking for :)

Henry Lee
- 12,215
1
Start with the identity $$ \def\A{A^{-1}} I \;=\; \A A $$ Differentiate each side $\left({\rm using}\;dA\;{\rm to\ denote}\;{\large\frac{dA}{dt}}\right)$ $$ 0 \;=\; d\A A \;+\; \A\,dA $$ Solve for $d\A$ $$ d\A = - \A\;dA\;\A $$

greg
- 35,825