Please help me understand this I know how the limit equals $e$ and $1/e$ but how is this happening I would like to see the proof
2 Answers
If you divide the first expression by the second one, you get $$ \frac{\left(1+\frac{1}{n}\right)^n}{1/(1-1/n)^n}=\left(1+\frac{1}{n}\right)^n \cdot \left(1-\frac{1}{n}\right)^n = \left(1-\frac{1}{n^2}\right)^n. $$ You should be able to show that this converges to $1$ as $n\rightarrow\infty$ (can you?). Which proves that the two sequences in the title must have the same limit (assuming either converges).

- 41,358
Observe that $1-\frac{1}{n}=\frac{n-1}{n}$
Thus, we have $$\frac{1}{(1-1/n)^n}=(\frac{n}{n-1})^n=(1+\frac{1}{n-1})^n=(1+\frac{1}{n-1})^{n-1} \cdot \frac{n-1}{n}$$Taking $\lim_\limits{n \to \infty}(1+\frac{1}{n-1})^{n-1} \cdot \frac{n-1}{n}=\lim_\limits{n \to \infty}(1+\frac{1}{n-1})^{n-1} \cdot \lim_\limits{n \to \infty} \frac{n-1}{n}=e \cdot 1=e$

- 10,690
$$\Big(1-\frac1n\Big)^n=\Big(\frac{n-1}{n}\Big)^n=\frac{1}{\Big(\frac{n}{n-1}\Big)^n}=\frac{1}{\Big(1+\frac{1}{n-1}\Big)^{n-1}\Big(1+\frac{1}{n-1}\Big)}$$
for $n\geq2$. The term $\Big(1+\frac{1}{n-1}\Big)^{n-1}\xrightarrow{n\rightarrow\infty}e$; the term $1+\frac{1}{n-1}\xrightarrow{n\rightarrow\infty}1$. Putting things together, one gets $$\Big(1-\frac{1}{n}\Big)^n\xrightarrow{n\rightarrow\infty}\frac{1}{e}$$
– Mittens Nov 20 '23 at 16:29