The methods yield two different answers. Could you explain the reason clearly and in detailed?
Question:
$$\lim_{{x \to \infty}} \left( \sqrt{x^2 + 6x + 14} - (x+1) \right) = ?$$
Solution:
Method 1:
By employing the conjugate of the original problem, the solution is as follows:
\begin{aligned} & =\operatorname{lim}_{x \rightarrow \infty}\left[\sqrt{(x+3)^2+5}-(x+1)\right] \\ & =\lim _{x \rightarrow \infty}\left[\sqrt{(x+3)^2 \cdot\left(1+\frac{5}{(x+3)^2}\right)}-(x+1)\right] \\ & =\lim _{x \rightarrow \infty}\left[|x+3| \cdot \sqrt{1+\frac{5}{(x + 3)^2}}-(x+1)\right] \\ & =\lim _{x \rightarrow \infty}[(x+3)-(x+1)]=2 \end{aligned}
Method 2:
Alternatively,
\begin{aligned} & =\lim_{x \rightarrow \infty}\left[\sqrt{x^2 \cdot\left(1+\frac{6}{x}+\frac{14}{x^2}\right)}-(x+1)\right] \\ & =\lim_{x \rightarrow \infty} \left[|x| \cdot \sqrt{1+\frac{6}{x}+\frac{14 }{x^2}}-(x+1)\right] . \\ & =\lim_{x \rightarrow \infty}[(x)-(x+1)]=-1 \end{aligned}
In some books, the authors solve the examples with $\infty-\infty$ indeterminate case by multiplying and dividing the expression by its conjugate in the $\infty-\infty$ indeterminate case. But is it not $\frac{\infty}{\infty}$? How can we do it? Please see my other question in this site.