Compute $${\sum_{n=1}^{+\infty}(-1)^n\left(\sum_{k=1}^{n}\frac{1}{2k-1}-\frac{ \ln n}{2}-\frac{\gamma}{2}-\ln 2\right)}.$$
What I have done so far
Lemma: $$\displaystyle{\mathop {\lim }\limits_{N \to \infty } \left( {\sum\limits_{n = 1}^N {\frac{1}{{4N - 1}}} - \frac {{\ln N}}{4}} \right) = \frac{3}{4}\ln 2 + \frac{1}{4}\gamma - \frac{\pi }{8}}$$ because even though $S = \sum_{n = 1}^N \frac{1}{4N - 1}$
$$\sum_{n = 1}^{4N} \frac{i - i^n}{n} = \sum_{n = 1}^N \frac{i - i^{4n - 3}}{4n - 3} + \sum_{n = 1}^N \frac{i - i^{4n - 2}}{4n - 2} + \sum_{n = 1}^N \frac{i - i^{4n - 1}}{4n - 1} + \sum_{n = 1}^N \frac{i - i^{4n}}{4n} \\ \quad = \sum_{n = 1}^N \frac{i + 1}{4n - 2} + \sum_{n = 1}^N \frac{2i}{4n - 1} + \sum_{n = 1}^N \frac{i - 1}{4n} $$\
$$\displaystyle{ = \frac{{i + 1}}{2}\sum\limits_{n = 1}^N {\frac{1}{{2n - 1}}} + 2i \cdot S + \frac{ {i - 1}}{4}\sum\limits_{n = 1}^N {\frac{1}{n}} = \frac{{i + 1}}{2}\left( {1 + \ frac{1}{3} + \frac{1}{5}.. + \frac{1}{{2N - 1}}} \right) + 2i \cdot S + \frac{{i - 1}} {4}{H_N} = }$$
$$\displaystyle{ = \frac{{i + 1}}{2}\left( {{H_{2N}} - \frac{1}{2}{H_N}} \right) + 2i \cdot S + \frac {{i - 1}}{4}{H_N} \approx \frac{{i + 1}}{2}\left( {\ln 2N + \gamma - \frac{1}{2}\left( { \ln N + \gamma } \right)} \right) + 2i \cdot S + \frac{{i - 1}}{4}\left( {\ln N + \gamma } \right) \approx }$$
$$\displaystyle{ \approx \frac{{i + 1}}{2}\left( {\ln 2 + \frac{1}{2}\ln N + \frac{1}{2}\gamma } \right ) + 2i \cdot S + \frac{{i - 1}}{4}\left( {\ln N + \gamma } \right) \Rightarrow \boxed{\sum\limits_{n = 1}^{4N } {\frac{{i - {i^n}}}{n}} \approx \frac{{i + 1}}{2}\ln 2 + \frac{i}{2}\left( {\ ln N + \gamma } \right) + 2i \cdot S}}$$
We also have $$\displaystyle{\sum\limits_{n = 1}^{4N} {\frac{{i - {i^n}}}{n}} = i{H_{4N}} - \sum\limits_{n = 1}^{4N} {\frac{{{i^n}}}{n}} \approx i\left( {\ln 4N + \gamma } \right) + \ln \left( {1 - i} \right) = i\left( {2\ln 2 + \ln N + \gamma } \right) + \ln \left( {\sqrt 2 {e^{ - i\frac{\pi }{4}} }} \right) = i\left( {2\ln 2 + \ln N + \gamma } \right) - i\frac{\pi }{4} + \frac{1}{2}\ln 2}$$