Let $a=3.00000000001234...$ (irrational number)
If $\overline{a}=3.00000000001$ (approximation $11$ places) then $|a-\overline{a}|<10^{-11}$
Note that the reciprocal is not satisfied:
If $\overline{a}=2.99999999998$ (approximation $0$ places) but $|a-\overline{a}|<10^{-10}$
How calculate $\pi$ to an accuracy of $10$ decimal places ?
Note that $|\pi-\overline{a}|<10^{-10}$ not guarantee the accuracy of one decimal place of $\pi$.
$\overline{a}:$ approximation
Any hints would be appreciated.