Question $$I=\int^1_0\frac{\ln(1+x)\ln(1+x^3)}{x}\mathrm{d}x$$
My approach so far
Let $$f(z)=\frac{\ln(1+z)\ln(1+z^3)}{z},\ I=\int^1_0f(z)\ \mathrm{d}z$$The main idea is to integrate $f(z)$ along three paths and obtain an algebraic equation with $I$.
The first path is simply the interval $[-1,1]$. Since the contributions from the indentations around the branch points tend to $0$, we may change the path to $e^{\pi i[0,1]}$. \begin{align} \int^1_{-1}f(z)\ \mathrm{d}z &=I-\int^1_0\frac{\ln(1-x)\ln(1-x^3)}{x}\mathrm{d}x\\ &=\mathrm{Im}\int^\pi_0\mathrm{Log}(1+e^{i\theta})\mathrm{Log}(1+e^{3i\theta})\ \mathrm{d}\theta\\ &=\frac{3}{2}\int^\frac{\pi}{3}_0\theta\ln\left(2\cos\frac{\theta}{2}\right)\mathrm{d}\theta+\frac{1}{2}\int^\frac{\pi}{3}_0\theta\ln\left(2\cos\frac{3\theta}{2}\right)\mathrm{d}\theta+\int^\pi_{\frac{\pi}{3}}\left(\frac{3}{2}\theta-\pi\right)\ln\left(2\cos\frac{\theta}{2}\right)\mathrm{d}\theta \end{align}The second path: \begin{align} \mathrm{Re}\int_{e^{\pi i/3}[0,1]}f(z)\ \mathrm{d}z &=\mathrm{Re}\int^1_0\frac{\ln(1+xe^{\pi i/3})\ln(1-x^3)}{x}\mathrm{d}x\\ &=\frac{1}{2}\int^1_0\frac{\ln(1+x+x^2)\ln(1-x^3)}{x}\mathrm{d}x\\ &=\frac{\zeta(3)}{3}-\frac{1}{2}\int^1_0\frac{\ln(1-x)\ln(1-x^3)}{x}\mathrm{d}x\\ &=\frac{\zeta(3)}{3}+\frac{1}{2}\int^1_{-1}f(z)\ \mathrm{d}z-\frac{1}{2}I \end{align}
The third path: \begin{align} \mathrm{Re}\int_{e^{\pi i[1/3,0]}}f(z)\ \mathrm{d}z &=\mathrm{Im}\int^\frac{\pi}{3}_0\mathrm{Log}(1+e^{i\theta})\mathrm{Log}(1+e^{3i\theta})\ \mathrm{d}\theta\\ &=\frac{3}{2}\int^\frac{\pi}{3}_0\theta\ln\left(2\cos\frac{\theta}{2}\right)\mathrm{d}\theta+\frac{1}{2}\int^\frac{\pi}{3}_0\theta\ln\left(2\cos\frac{3\theta}{2}\right)\mathrm{d}\theta \end{align}-