We have the function $f(x)=\frac{(x-2)\ln(x-1)}{1-\cos(x-2)}$ and I'm supposed to check if I can set a value for $f(2)$ such that $f$ is continuous. So I'm trying to calculate the limit of $f$ as $x$ approaches $2$.
What I've done so far is the following $$\begin{align} \frac{(x-2)\ln(x-1)}{1-\cos(x-2)}=&\frac{(x-2)\ln(x-1)(1+\cos(x-2))}{(1-\cos(x-2))(1+\cos(x-2))}\\=&\frac{(x-2)\ln(x-1)(1+\cos(x-2))}{\sin^2(x-2)}\\=&\frac{(x-2)\ln(x-1)(1+\cos(x-2))(x-2)^2}{\sin^2(x-2)(x-2)^2}\\=&\frac{(x-2)\ln\frac{1}{1-x}(1+\cos(x-2))}{(x-2)(2-x)}\frac{2-x}{\sin(2-x)}\frac{2-x}{\sin(2-x)}\end{align}$$