I started an answer... and in between we have already an accepted one. Well, the result slightly differs, so i completed the message, and will post it...
Let us denote by $J$ the integral to be computed, we have:
$$
\begin{aligned}
J &=
\int_0^\pi
\sin x\sqrt{\frac{1+\cos(9x)}{1+\cos x}}\; dx
\qquad\text{(Substitution: $x=2y$)}
\\
&
=
\int_0^{\pi/2}
\sin (2y)\sqrt{\frac{1+\cos(18y)}{1+\cos (2y)}}\; 2\; dy
=
\int_0^{\pi/2}
\sin (2y)\sqrt{\frac{2\cos^2(9y)}{2\cos^2 y}}\; 2\; dy
\\
&=
2\int_0^{\pi/2}
\sin (2y)\frac{|\ \cos(9y)\ |}{\cos y}\; dy
\qquad\text{(Substitution: $y=\frac \pi2-u$)}
\\
&
=
2\int_0^{\pi/2}
\sin (2u)\frac{|\ \sin(9u)\ |}{\sin u}\; du
=
2\int_0^{\pi/2}
2\cos u\;|\ \sin(9u)\ |\; du
\\
&=
\left(
\int_0^{\pi/9} -
\int_{\pi/9}^{2\pi/9} +
\int_{2\pi/9}^{3\pi/9} -
\int_{3\pi/9}^{4\pi/9} +
\int_{4\pi/9}^{\pi/2}
\right)
\left(-\frac 14\cos(8u)-\frac 15\cos(10u)\right)'\; du
\\
&=
\frac {17}{20}
+\frac 9{10}
\underbrace{
\left(
\cos\frac \pi9 +
\cos\frac {2\pi}9 +
\cos\frac {4\pi}9
\right)}_{:=g}
\approx
2.541446717414\dots\qquad\ .
\end{aligned}
$$
Note:
We can compute the "Gauss sum" denoted above by $g$ "(more) explicitly",
$$
\begin{aligned}
g &=
\cos\frac \pi9 +
\cos\frac {2\pi}9 +
\cos\frac {4\pi}9
=
\cos\frac \pi9 +
\cos\frac {(3-1)\pi}9 +
\cos\frac {(3+1)\pi}9
\\
&=
\cos\frac \pi9 + 2\cos \frac {3\pi}9\cos\frac \pi 9
=2\cos\frac \pi 9
\end{aligned}
$$
So we finally have:
$$
\bbox[lightyellow]{\qquad J=\frac {17}{20}+\frac 95\cos\frac \pi9\ .\qquad}
$$
Numerical checks, here pari/gp:
If we use a high precision (1000) in pari, then
intnum( x=0, Pi, sin(x) * sqrt( (1+cos(9*x)) / (1+cos(x)) ) )
delivers 2.5414565207310...
and the computation of the above claimed value is
? \p 60
realprecision = 77 significant digits (60 digits displayed)
? 17/20 + 9/5*cos(Pi/9)
%42 = 2.54144671741463509129739669918451664588517464167603633956252
Well, the numeric integration delivers at least four exact decimals.