I want to solve
$$
\int_{0}^\infty\frac{\log^3(x)}{x^2+1}\,dx=0.
$$
The problem is that when I use the curve
I have that \begin{align*} 0 &=\int_{\Gamma}\frac{\log^3 z}{z^2+1}\\ &=\int_{\gamma_r}\frac{\log^3 z}{z^2+1} +\int_{\gamma_R}\frac{\log^3 z}{z^2+1} +\int_{r}^R\frac{\log^3x}{x^2+1} +\int_{-R}^{-r}\frac{(\log|x|+i\pi)^3}{x^2+1} \end{align*} where $\log z$ is the log without negative pure complex numbers. Also ($\rho=R$ or $\rho=r$) \begin{align*} \int_{\gamma_\rho}\frac{\log^3z}{z^2+1} &=\int_0^\pi\frac{(\log\rho+i\theta)^3}{\rho^2e^{2i\theta}+1}i\rho e^{i\theta}\,d\theta =\int_0^\pi\frac{\log^3\rho-i\theta^3+3i\theta\log^2\rho-3i\theta^2\log\rho}{\rho^2e^{2i\theta}+1}i\rho e^{i\theta}\,d\theta\\ &=\int_0^\pi\frac{\log^3\rho}{\rho^2e^{2i\theta}+1}i\rho e^{i\theta}\,d\theta -i\int_0^\pi\frac{\theta^3}{\rho^2e^{2i\theta}+1}i\rho e^{i\theta}\,d\theta +3i\int_0^\pi\frac{\theta\log^2\rho}{\rho^2e^{2i\theta}+1}i\rho e^{i\theta}\,d\theta -3i\int_0^\pi\frac{\theta^2\log\rho}{\rho^2e^{2i\theta}+1}i\rho e^{i\theta}\,d\theta \end{align*} And \begin{align*} \int_{-R}^{-r}\frac{(\log|x|+i\pi)^3}{x^2+1} =\int_{r}^{R}\frac{(\log|x|+i\pi)^3}{x^2+1} =\int_{r}^{R}\frac{\log^3x-i\pi^3+3i\pi\log^2x-3i\pi^2\log x}{x^2+1} \end{align*} But I'm uncertain if this is the way, cause is huge and I don't know how to lead with integration of $\frac{\log^2x}{x^2+1}$.