How to find the inverse of $3\times 3$ block upper triangular matrix
$$X = \begin{bmatrix} \mathbb{1} & \mathbb{B} & 0\\ 0 & \mathbb{1} & \mathbb{B}\\ 0 & 0 & \mathbb{1} \end{bmatrix}$$
where $\mathbb{B}$ is a $3\times 3$ matrix.
Edit:
Is there a general proof for such a problem?
Here's an approach that I have tried. I started by decomposing the matrix into kronecker product of individual matrices.
$$ X = \mathbb{1}_{3x3}\otimes\mathbb{1}_{3x3} + \mathbb{B}_{3x3}\otimes\mathbb{C}_{3x3} $$ where $$ \mathbb{C}_{3x3} = \begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{bmatrix}$$