If I understand your confusion correctly, The confusion lies in $1^{\infty}$ part, When we say $1^n=1$ Which is of form $a^n$ for all Real values of "$n$" ,We absolutely know $a=1$ exactly
While talking About limits
When We say $(\rightarrow1)^{\rightarrow \infty}$
Now consider
$(\rightarrow1^{+})^{\rightarrow \infty}$
Let us see what binomial expansion tells us
$(1+\frac{1}{n})^n=\binom{n}{0}+\binom{n}{1}\frac{1}{n}+\binom{n}{2}(\frac{1}{n})^2.....$
Now $\binom{n}{0}$ and $\binom{n}{1}\frac{1}{n}$ are obvious determinate forms when $n\rightarrow\infty$,
All other sums like
$\binom{n}{2}\frac{1}{n^2}=\frac{n(n-1)}{2!(n^2)}$ and $\binom{n}{3}\frac{1}{n^3}=\frac{n(n-1)(n-2)}{3!(n^3)}$ etc. should be evaluated individually by applying limits
which means all $(\rightarrow1^{+})^{\rightarrow \infty}$ cases are not same, because each will have different binomial or other expansions
A quick demonstration of individual application of limit for above series is as follows
$L=\displaystyle \lim_{n \to \infty}\frac{n(n-1)}{2!(n^2)}=\displaystyle \lim_{n \to \infty}\frac{n^2(1-\frac{1}{n})}{2!(n^2)}=\frac{1}{2!}$
similarly doing such evaluations
you will get that
$\displaystyle \lim_{n \to \infty}(1+\frac{1}{n})^n=1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}.........$
Now using expansion for $e^x$,Which can be proved without proving this limit, So that The argument is not circular and putting $x=1$ gives the same Summation obtained above
Hence the Limit $L=e$
what we meant by $1^ \infty$ being indeterminate that if some $a_n \to 1$ and $b_n \to \infty $ the we can't say any thing about $a_n ^{b_n}$ i.e it can be any value
– pie Nov 12 '23 at 03:07