How to prove this identity for $2\le n\in\Bbb N^+, a , b > 0$? $$ \sum_{k=0}^{n-1}\frac1{a^2\cos^2\left(\frac kn⋅π\right)+b^2\sin^2\left(\frac kn⋅π\right)}=\frac{n}{ab}⋅\frac{(a+b)^n+(b-a)^n}{(a+b)^n-(b-a)^n} $$
First I apply double angle formula $$\frac1{a^2\cos^2\left(\frac kn⋅π\right)+b^2\sin^2\left(\frac kn⋅π\right)}=\frac1{\frac{a^2-b^2}2\cos(2k\pi/n)+\frac{a^2+b^2}2}$$ Similar to Finite Series $\sum_{k=1}^{n-1}\frac1{1-\cos(\frac{2k\pi}{n})}$ and Complex Partial Fraction Decomposition
I get this identity from Riemann sum of this integral: \begin{align*} \int_0^π\frac{\mathrm{{}d}t}{a^2\cos^2t+b^2\sin^2t}&=\lim_{n→∞}\fracπn\sum_{k=0}^{n-1}\frac1{a^2\cos^2\left(\frac kn⋅π\right)+b^2\sin^2\left(\frac kn⋅π\right)}\\ &=\lim_{n→∞}\fracπ{ab}⋅\frac{(a+b)^n+(b-a)^n}{(a+b)^n-(b-a)^n}\\ &=\fracπ{a b} \end{align*} It looks like the sum of gravitational potential from points $(a\cos(\frac kn\cdot\pi),b\sin(\frac kn\cdot\pi))$ on an ellipse.