Let $U_1, U_2$ be subspaces of the real vector space $V$. Prove that $U_1 \cup U_2$ is a subspace of $V$ iff $U_1 \subset U_2$ or $U_2 \subset U_1$
Is my proof valid?
- Firstly proving $U_1 \cup U_2 \space \text{is a subspace} \implies U_1 \subset U_2$ or $U_2 \subset U_1$
$\begin{align*}U_1 \cup U_2 \space \text{is a subspace} & \implies \alpha u_1+\beta u_2 \in U_1 \cup U_2 \space\space\forall u_1 \in U_1, \forall u_2 \in U_2, \forall\alpha,\beta \in \mathbb{R} \\ & \implies \alpha_0 u_1+\beta_0 u_2 \in U_1 \space\text{or} \space \alpha_0 u_1+\beta_0 u_2 \in U_2 \space \text{for some $\alpha_0, \beta_0 \neq 0$} \end{align*}$
$\text{WLOG assume}\space \alpha_0 u_1+\beta_0 u_2 \in U_1$
$\begin{align*} & \alpha_0 u_1+\beta_0 u_2 &&\in U_1 \\ \implies & \alpha_0 u_1+\beta_0 u_2 + (-\alpha_0)u_1 &&\in U_1 \\ \implies & \beta_0 u_2 &&\in U_1 \\ \implies & \frac{1}{\beta_0}\cdot\beta_0 u_2 &&\in U_1 \\ \implies & u_2 &&\in U_1 \text{(All by the properties defined on a vector subspace.)} \end{align*}$
Hence $U_2 \subset U_1 \space \text{and similarly} \space U_1 \subset U_2.$ $\text{Thus} \space U_1 \cup U_2 \space \text{is a subspace} \implies U_1 \subset U_2$ or $U_2 \subset U_1$
- Secondly proving $ U_1 \subset U_2$ or $U_2 \subset U_1 \implies U_1 \cup U_2 \space \text{is a subspace}$
$\text{WLOG assume $U_1 \subset U_2$}$
$\begin{align*} \text{Hence} \\ &u_1 &&\in U_2 \space \forall u_1 \in U_1 \\ &\alpha u_1+\beta u_2 &&\in U_2 \space \forall u_2 \in U_2, \space \forall \alpha, \beta \in \mathbb{R} \\ &\alpha u_1+\beta u_2 &&\in U_1 \cup U_2 \end{align*}$
Hence $U_1 \subset U_2$ or $U_2 \subset U_1 \implies U_1 \cup U_2 \space \text{is a subspace}$
Please let me know if this is correct.