Thank you for clearing things up @Callum.
Let me start with a definition. Let $\mathbb{K}$ be a field and $\mathfrak{g}$ be a finite dimensional $\mathbb{K}$-Lie algebra. A subalgebra $\mathfrak{h}\subseteq \mathfrak{g}$ is called toral, if $\mathfrak{h}$ is abelian and the linear maps in $\operatorname{ad}(\mathfrak{h}) \subseteq \mathfrak{gl}(\mathfrak{g})$ are diagonalizable over the algebraic closure of $\mathbb{K}$. If $\operatorname{ad}(\mathfrak{h})$ is moreover diagonalizable over $\mathbb{K}$, then $\mathfrak{h}$ is $\mathbb{K}$-split toral. If $\mathfrak{h}$ is maximal among the $\mathbb{K}$-split toral subalgebras, then it is called maximal $\mathbb{K}$-split toral.
Let now $\mathfrak{g}$ be a real, semisimple, finite-dimensional Lie algebra and $\mathfrak{a}'$ a maximal $\mathbb{R}$-split toral subalgebra. Now let $\mathfrak{h}'$ be a maximal toral subalgebra containing $\mathfrak{a}'$. This exists because of finite-dimensionality.
To prove that $\mathfrak{h}'$ is a real Cartan subalgebra, we have to show that $\mathfrak{h}'_\mathbb{C}$ is a complex Cartan subalgebra. It is easy to show that $\mathfrak{h}'_\mathbb{C}$ is abelian. Since $\mathfrak{h}'$ is abelian and the elements of $\operatorname{ad}(\mathfrak{h}')$ are $\mathbb{C}$-diagonalizable, they are in fact simultaneously diagonalizable. Hence for any $X,X' \in \mathfrak{h}'$, $\operatorname{ad}(X+iX') = \operatorname{ad}(X) + i\operatorname{ad}(X') \in \mathfrak{gl}(\mathfrak{g}_\mathbb{C})$ are diagonalizable. This means that $\mathfrak{h}'_{\mathbb{C}}$ is a toral subalgebra of $\mathfrak{g}_\mathbb{C}$. In fact, $\operatorname{ad}(\mathfrak{h}'_{\mathbb{C}})$ is simultaneously diagonalizable and $\mathfrak{h}'_\mathbb{C}$ is maximal toral. Then by [Knapp, Prop 2.13], $\mathfrak{h}'_\mathbb{C}$ is a Cartan subalgebra of $\mathfrak{g}_\mathbb{C}$. Hence $\mathfrak{h}'$ is a Cartan subalgebra of $\mathfrak{g}$, answering the first question.
Now that we have a real Cartan subalgebra $\mathfrak{h}' \supseteq \mathfrak{a}'$, we can apply [Knapp, Prop 6.59] to conjugate it to a $\theta$-stable Cartan subalgebra $\mathfrak{h} = \operatorname{Ad}(g)(\mathfrak{h}')$. Let $\mathfrak{a} := \mathfrak{h}\cap \mathfrak{p}, \mathfrak{m} := \mathfrak{h}\cap \mathfrak{k}$. Since $\mathfrak{h}$ is $\theta$-invariant, $\theta(\mathfrak{a}) \subseteq \mathfrak{a}$ and $\theta(\mathfrak{m}) \subseteq \mathfrak{m}$, so $\mathfrak{h} = \mathfrak{a} \oplus \mathfrak{m}$. Note that since the elements of $\operatorname{ad}(\mathfrak{a}')$ are $\mathbb{R}$-diagonalizable, so must the conjugated elements in $\operatorname{Ad}(g)(\mathfrak{a}') \subseteq \mathfrak{h}$ be. We know that for $X\in \mathfrak{a} \subseteq \mathfrak{p}, Y \in \mathfrak{m} \subseteq \mathfrak{k}$, $\operatorname{ad}(X)$ is $\mathbb{R}$-diagonalizable, but $\operatorname{ad}(Y)$ is not. In fact $\operatorname{ad}(X+Y)$ is $\mathbb{R}$-diagonalizable if and only if $Y = 0$. Therefore $\operatorname{Ad}(g)(\mathfrak{a}') \subseteq \mathfrak{a}$. $\mathfrak{a}$ is split toral, and since $\operatorname{Ad}(\mathfrak{a}')$ is maximal split toral, we have $\operatorname{Ad}(g)(\mathfrak{a}') = \mathfrak{a}$.
Since in any $\theta$-stable CSA $\mathfrak{h}'' = \mathfrak{a}'' \oplus \mathfrak{m}''$, $\mathfrak{a}''$ is a split toral subalgebra, $\mathfrak{h}''$ is maximally noncompact (i.e. $\operatorname{dim}(\mathfrak{a}'')$ is maximal) if and only if it contains a maximal $\mathbb{R}$-split toral subalgebra.
In the complex case, Knapp shows that CSA = maximal abelian diagonalizable = maximal toral. But how do I see this in the real case?
– Strichcoder Nov 08 '23 at 10:37