I found this on this website:
I try to generalize its conclusions:
I believe:
with $q>p>0$,
$$ \lim_{n\to+\infty}\int_0^1\cdots\int_0^1\frac{x_1^q+x_2^q+\cdots+x_n^q}{x_1^p+x_2^p+\cdots+x_n^p}dx_1dx_2\cdots dx_n=\frac{p+1}{q+1} $$
The answers below this page give perfect proof.
We can continue to promote it.
With $f\in[0,1]$,$g\in[0,1]$,$\exists C>0 ,\forall x\in[0,1]$,$0<f(x)<Cg(x)<\infty$ and $\int_0^1g(x)dx<\infty$
$$ \lim_{n\to+\infty}\int_0^1\cdots\int_0^1\frac{\sum_{i=1}^{n}f(x_i)}{\sum_{i=1}^{n}g(x_i)}dx_1dx_2\cdots dx_n=\frac{\int_0^1f(x)dx}{\int_0^1g(x)dx} $$
Proof of this conclusion I find it here today.
Well, this is over, and you can use this as a navigation transit page.