Evaluate $\lim_{x \to 1} (\frac{1}{1-x} - \frac{3}{1-x^3}) $
We have $$(1-x^3) = (1-x)(1+x+x^2) \implies \frac{1}{1-x} = \frac{(1+x+x^2)}{(1-x^3)}$$
So we have $$\frac{1}{1-x} - \frac{3}{1-x^3} = \frac{(1+x+x^2)}{(1-x^3)} - \frac{3}{1-x^3} = \frac{x^2 + x - 2}{1-x^3} =$$ $$ \frac{(x+2)(x-1)}{(1-x)(1+x+x^2)} = - \frac{(x+2)}{(1+x+x^2)}$$
Now, we can safely evaluate
$$\lim_{x \to 1} - \frac{x+2}{1+x+x^2} = - \frac{1+2}{1+1+1^2} = - \frac{3}{3} = - 1$$
Is this correct ? They don't give out solutions to this problem