A bit of a tedious proof. Assume wlog that $\sup_{x,y\in\mathbb{R}^m}\|f(x+y)-f(x)-f(y)\| = 1$.
Lemma 1
Let $x_1,x_2,\ldots,x_k\in\mathbb{R}^m, 1 < k$, then
$\left\|f\left(\sum_{i=1}^k x_i\right) - \sum_{i=1}^kf(x_i)\right\| < k-1$
Proof: We use induction. The base case $k=2$ is just the given condition. Assume as induction hypothesis that $\left\|f\left(\sum_{i=1}^{k-1} x_i\right) - \sum_{i=1}^{k-1}f(x_i)\right\| < k-2$. Then
$$
\left\|f\left(\sum_{i=1}^k x_i\right) - \sum_{i=1}^k f(x_i)\right\|= \left\|f\left(\sum_{i=1}^k x_i\right) - f\left(\sum_{i=1}^{k-1} x_i\right) +f\left(\sum_{i=1}^{k-1} x_i\right) - \sum_{i=1}^k f(x_i)\right\|\leq\\
\leq \left\|f\left(\sum_{i=1}^{k-1} x_i\right) - \sum_{i=1}^{k-1}f(x_i)\right\| + \left\|f\left(\sum_{i=1}^k x_i\right) - f\left(\sum_{i=1}^{k-1} x_i\right) - f(x_k)\right\| <k-2 + 1=k-1,
$$
using the induction hypothesis and the base case, so the general case is proven by induction.
Lemma 2
For positive integer $p$ and a vector $x\in\mathbb{R}^m$, we have
$\|f(-px)+pf(x)\| < p+1.$
Proof: Note that $\|f(0)\| = \|-f(0)-f(x)+f(x)\|\leq 1$, using the main condition. Thus using Lemma 1:
$$
\|f(-px)+pf(x)\|\leq \|f(0)-f(-px)-pf(x)\|+\|f(0)\| < p+1.
$$
Lemma 3
Let $t_1,t_2,\ldots,t_k\in\mathbb{R}$ be scalars and $x_1,x_2,\ldots,x_k\in\mathbb{R}^n$ vectors, then $\left\|f\left(\sum_{i=1}^kt_ix_i\right) - \sum_{i=1}^kt_if(x_i)\right\| < 2k - 1 + \sum_{i=1}^k |t_i|$.
Proof: First we prove the case $k=1$. Let $p \neq 0$ and $q > 0$ be integers. If $p > 0$, then using Lemma 1 we have that
$$
\left\|\frac{p}{q}f(x)-f\left(\frac{p}{q}x\right)\right\|=
\frac{1}{q}\left\|pf(x)-qf\left(\frac{p}{q}x\right)\right\|=
\frac{1}{q}\left\|pf(x) - f(px)+f(px)-qf\left(\frac{p}{q}x\right)\right\|\leq\\
\leq \frac{1}{q}\left\|f(px) - pf(x) \right\| + \frac{1}{q}\left\|f(px) - qf\left(\frac{px}{q}\right)\right\| < \frac{p-1}{q} + \frac{q-1}{q} < p/q + 1. \tag{1}\label{ineq:1}
$$
On the other hand if $p < 0$, then using Lemma 2 we have similarly as above that:
$$
\left\|\frac{p}{q}f(x)-f\left(\frac{p}{q}x\right)\right\| < \left(\frac{|p|+1}{q} + \frac{q-1}{q} \right)M < \frac{|p| + 1}{q} + 1 \tag{2}\label{ineq:2}
$$
Now let $\frac{p_1}{q_1},\frac{p_2}{q_2},\ldots$ be a rational sequence that converges to some nonzero $t\in\mathbb{R}$. Then by continuity of $f$ and of the norm, we have that
$$
\left\|\frac{p_i}{q_i}f(x)-f\left(\frac{p_i}{q_i}x\right)\right\| \to \|tf(x)-f(tx)\|,
$$
while the bounds $\eqref{ineq:1}$ and $\eqref{ineq:2}$ also converge to $|t|+1$, thus proving the case $k=1$.
Now we prove the general case $k>1$:
$$
\left\|f\left(\sum_{i=1}^kt_ix_i\right) - \sum_{i=1}^kt_if(x_i)\right\|\leq
\sum_{i=1}^k\| f(t_ix_i) - t_if(x_i) \| + \left\|f\left(\sum_{i=1}^kt_ix_i\right) - \sum_{i=1}^kf(t_ix_i)\right\| <\\< k-1+\sum_{i=1}^k |t_i|+1 = 2k + \sum_{i=1}^k |t_i|,
$$
using Lemma 1 and the case $k=1$, which completes the proof.
Solution to the problem
First we prove that the sequence $\{f(tx)/t\}$ is convergent for any $x\in\mathbb{R}^m$, where $t$ is a positive integer. Indeed given any $\epsilon > 0$ and $N > 2\epsilon^{-1}$, we have for all positive integers $t,s > N$ that
$$
\left\| \frac{f(tx)}{t} - \frac{f(sx)}{s} \right\| = \frac{1}{ts}\left\| sf(tx) - tf(sx)\right\| \leq \frac{1}{ts}\left\| f(tsx) - tf(sx)\right\| + \frac{1}{ts}\left\| f(tsx) - sf(tx)\right\| < \frac{t+s-2}{ts} < \epsilon
$$
using Lemma 1, so $\{f(tx)/t\}$ is Cauchy, and hence convergent since $\mathbb{R}^n$ is complete.
Let $\{e_1,\ldots,e_m\}$ be the standard basis of $\mathbb{R}^m$, and let $A_t = \begin{pmatrix}f(te_1)/t&f(te_2)/t&\cdots&f(te_m)/t\end{pmatrix}$. If $x=\sum_{i=1}^m x_i e_i$, then by Lemma 3 we have
$$
\|f(x)-A_tx\|=\left\|f\left(\sum_{i=1}^m x_i e_i \right)-\sum_{i=1}^m x_i\frac{f(te_i)}{t}\right\| < 2m - 1 + \frac{1}{t}\sum_{i=1}^m|x_i|.
$$
Taking the limit, setting $A = \lim_{t\to\infty}A_t$ and using continuity gives us the result.