Am i right that $\sigma$ - algebra $\Rightarrow$ topology?
The defintion of $\sigma$-algebra is:
The family of set $\mathcal{M}$ is $\sigma$ -algebra on X if:
- $\emptyset \in X $
- $\forall A \in \mathcal{M} :X \backslash A \in \mathcal{M}$
- $\forall A_j \in \mathcal{M},j \in \mathbb{N}:\bigcup_{j=1}^{\infty}Aj \in \mathcal{M} $
The family $\mathcal{\tau} $ is topology on X if:
- $\emptyset ,X \in \tau $
- If family $\mathcal{N} \subset \tau $ then $\bigcup \mathcal{N} \in \tau$
- $U,V \in \tau \Rightarrow U \cap V\in \tau$