Start by checking $n=0,1,2,3$ which yields two solutions: $(0,1)$ and $(3,7)$.
Going forward consider only $n\geq 4$.
$n \cdot 2^{n+1} = (x-1)(x+1)$
Note that since $2 | (x-1)(x+1)$, both $x-1$ and $x+1$ are even.
$gcd(x-1,x+1) = gcd(x-1,x+1-(x-1)) = gcd(x-1,2) = 2$.
Since $2^{n+1}|(x-1)(x+1) \Rightarrow 2^n|(x-1)$ or $2^n|(x+1)$.
$Case $ $ 2^n|(x-1):$
$2^n|(x-1) \Rightarrow \exists k \in \mathbb{N},$ $ x-1 = k\cdot2^n \iff x = k \cdot 2^n+1.$
$n \cdot 2^{n+1} = (x-1)(x+1) \iff n \cdot 2^{n+1} = k\cdot2^n\cdot(k\cdot2^n+2)\iff n=k\cdot(k\cdot2^{n-1}+1)$.
$n = k\cdot(k\cdot2^{n-1}+1) \geq 2^{n-1}+1 > n$ for $n\geq4$.
$Case $ $ 2^n|(x+1):$
$2^n|(x+1) \Rightarrow \exists k \in \mathbb{N},$ $ x+1 = k\cdot2^n \iff x = k \cdot 2^n-1.$
$n \cdot 2^{n+1} = (x-1)(x+1) \iff n \cdot 2^{n+1} = k\cdot2^n\cdot(k\cdot2^n-2)\iff n=k\cdot(k\cdot2^{n-1}-1)$.
$n = k\cdot(k\cdot2^{n-1}-1) \geq 2^{n-1}-1 > n$ for $n\geq4$.
Hence $(0,1)$ and $(3,7)$ are the only solutions.