It seems that $$\int_0^1\prod_{k=1}^\infty (1-x^k)\, dx=\frac{8\sqrt{69}\pi \sinh (\sqrt{23}\pi/6)}{46\cosh (\sqrt{23}\pi /3)-23}.$$
Below I present a proof, but there is one problem with that "proof".
First we use the pentagonal number theorem: $$I=\int_0^1\prod_{k=1}^\infty (1-x^k)\, dx=\int_0^1 \sum_{k=-\infty}^\infty (-1)^k x^{\frac{k(3k-1)}{2}}\, dx,$$ then interchange integral and series to obtain $$I=2\sum_{k=-\infty}^\infty \frac{(-1)^k}{3k^2-k+2}.$$ Then $$I=-1+2\sum_{k=0}^\infty \frac{(-1)^k}{3k^2-k+2}+2\sum_{k=0}^\infty \frac{(-1)^k}{3k^2+k+2}$$ and we use partial fraction decomposition: $$I=-1+\frac{2i}{\sqrt{23}}\sum_{k=0}^\infty \left(\frac{(-1)^k}{k-\frac{1}{6}+i\frac{\sqrt{23}}{6}}-\frac{(-1)^k}{k-\frac{1}{6}-i\frac{\sqrt{23}}{6}}\right)+\frac{2i}{\sqrt{23}}\sum_{k=0}^\infty \left(\frac{(-1)^k}{k+\frac{1}{6}+i\frac{\sqrt{23}}{6}}-\frac{(-1)^k}{k+\frac{1}{6}-i\frac{\sqrt{23}}{6}}\right).$$
Now $$\Phi (z,s,a)=\sum_{k=0}^\infty \frac{z^k}{(a+k)^s},\quad \Re s\gt 1, |z|\ge 1.$$ If we suppose that $s$ is a positive integer then $a\notin -\mathbb{N}$. If we suppose that $z\notin [1,\infty)$, then the Lerch transcendent has the following integral representation: $$\Phi (z,s,a)=\frac{1}{\Gamma (s)}\int_0^\infty \frac{x^{s-1}e^{-ax}}{1-ze^{-x}}\, dx,\quad \Re s\gt 0,\Re a\gt 0.$$
Here comes the important part: If we ignore that $\Re s\gt 1$ in the series definition of $\Phi$ and if we ignore that $\Re a\gt 0$ in the integral representation, then we can write $I$ as $$\begin{align}I&=-1+\frac{2i}{\sqrt{23}}\left(\Phi \left(-1,1,-\frac{1}{6}+i\frac{\sqrt{23}}{6}\right)-\Phi\left(-1,1,-\frac{1}{6}-i\frac{\sqrt{23}}{6}\right)+\Phi\left(-1,1,\frac{1}{6}+i\frac{\sqrt{23}}{6}\right)-\Phi\left(-1,1,\frac{1}{6}-i\frac{\sqrt{23}}{6}\right)\right)\\&=-1+\frac{2i}{\sqrt{23}}\int_0^\infty \frac{1}{1+e^{-x}}\left(e^{\frac{1}{6}x-i\frac{\sqrt{23}}{6}x}-e^{\frac{1}{6}x+i\frac{\sqrt{23}}{6}x}+e^{-\frac{1}{6}x-i\frac{\sqrt{23}}{6}x}-e^{-\frac{1}{6}x+i\frac{\sqrt{23}}{6}x}\right)\, dx\\&=-1+\frac{8}{\sqrt{23}}\int_0^\infty \frac{\sin\frac{\sqrt{23}x}{6}\cosh\frac{x}{6}}{1+e^{-x}}\, dx.\end{align}$$ By utilizing Laplace transforms, this can be rewritten to $$I=\frac{4}{\sqrt{23}}\int_{-\infty}^\infty \frac{\sin\frac{\sqrt{23}x}{6}}{1+e^{-x}}e^{\frac{x}{6}}\, dx.$$ Then a routine application of the residue theorem yields $$I=\frac{4\pi}{\sqrt{23}\sinh \sqrt{23}\pi}\sum_{k=0}^5 \cosh\left(\frac{\sqrt{23}}{6}(2k+1)\pi-\sqrt{23}\pi\right)e^{(2k+1)\frac{i\pi}{6}},$$ which, after using Euler's formula, gives $$I=\frac{8\sqrt{69}\pi \sinh (\sqrt{23}\pi/6)}{46\cosh (\sqrt{23}\pi /3)-23}.$$
Question
How to make the proof rigorous? In other words: notice how we ignored two conditions when using the Lerch transcendent. How can this be patched?
As a reference for the Lerch transcendent, I used https://dlmf.nist.gov/25.14