$$\boxed{J = \int_0^{\frac{\pi}{4}}\operatorname{Li}_3(\tan^4(x)) \, dx}$$
Since I had no clue about trilogarithms, tried some searching to get enough understanding to solve the above integral, I found this general relation;
$$\operatorname{Li}_s(z)=\frac{\Gamma(1-s)}{2\pi^{1-s}}\left(i^{1-s}\zeta\left(1-s,\frac{1}{2}+\frac{\ln(-z)}{2\pi i}\right)+i^{s-1}\zeta\left(1-s,\frac{1}{2}-\frac{\ln(-z)}{2\pi i}\right)\right)$$
Also, some general functional equations from here, specifically,
$$\operatorname{Li}_3(z)+\operatorname{Li}_3(-z)=\frac{1}{4}\operatorname{Li}_3(z^2)$$
$$\operatorname{Li}_3(z)-\operatorname{Li}_3(-z^{-1})=\frac{-1}{6}\left(\ln^3 z+\pi^2 \ln z\right)$$
Or rewriting the above as;
$$\operatorname{Li}_3(z)-\operatorname{Li}_3(-z^{-1})=\frac{-1}{6}\ln^3 z-\zeta(2)\ln z$$
Understanding any other aspects about trilogarithms (or polylogarithm in general) required knowledge was beyond my scope. So I started solving the integral as follows;
Using some prior experience in solving some basic dilogarithmic integrals, I substituted $\tan(x)=t$;
$$J=\int_0^{1}\frac{\operatorname{Li}_3(t^4)}{1+t^2}\,dt$$
$$J=\int_0^{1}\frac{\operatorname{Li}_3(x^4)}{1+x^2}\,dx$$
Using the first functional equation,
$$J=\int_0^{1}\frac{4\operatorname{Li}_3(x^2)}{1+x^2}\,dx+\int_0^{1}\frac{4\operatorname{Li}_3(-x^2)}{1+x^2}\,dx=J_1+J_2$$
Edit 1: $$\operatorname{Li}_n(z)=\frac{(-1)^{n-1}}{(n-1)!}\left[\int_0^1\frac{z\ln^{n-1}x}{-zx+1}\,dx\right]$$
Found the above here in the 5th integral representation.
Putting $n=3$,
$$J_1=\int_0^{1}\frac{4\operatorname{Li}_3(x^2)}{1+x^2}\,dx=2\int_0^1\int_0^1\frac{1}{(1+x^2)}\frac{x^2\ln^{2}t}{(1-x^2t)}\,dx\,dt$$
Edit 2:
$$J_1=2\int_0^1\int_0^1\frac{x^2\ln^{2}t}{(1-x^2t)(1+x^2)}\,dx\,dt$$
$$J_1=\int_0^1\int_0^1\frac{\ln^{2}t}{(1-x^2t)(1+x^2)}\,dx\,dt-\int_0^1\int_0^1\frac{\ln^{2}t}{(1+t)(1+x^2)}\,dx\,dt$$
Could take this further but it seems like I'm missing some identity or formula to move forward. I am interested in understanding how to solve this integral.
Edit 3: The answer is $$\boxed{J=\frac{1}{8}\left(\zeta\left(4,\frac{1}{4}\right)-\zeta\left(4,\frac{3}{4}\right)\right)-\pi \left(\frac{2\pi G}{3}+\frac{27\zeta(3)}{4}\right)}$$
$G$ is Catalan's constant.