In this problem, it is given that $a_{1} = 2\,$ and $\,(a_{n+1} = 2\cdot a_{n}+5)$. So the first terms of the sequence are $(2, 9, 23, 51, 107, 219,...)$. It is asked to find the general term $a_{n}$ of this sequence of natural numbers. (It is clear that it is not to use the previous term as already given)
-
3Does this answer your question? Find the nth term of a recursive sequence See, in particular, Berkheimer's answer. – Gonçalo Oct 26 '23 at 02:27
3 Answers
$a_1 = 2\,$ and $\,a_{n+1} = 2a_n + 5$
The above recurrence relation is non-homogeneous.
The general solution/closed form is given by (1) ;
$$\boxed{a_n=a_n^H+a_n^p}\tag1$$
Solving the $a_n^H$ part;
Using the characteristic equation method;
$$x-2=0 \implies a_n^H=c_12^n$$
Solving the $a_n^p$ part;
Put $a_n=P_0$ and $a_{n+1}=P_0$ in the recurrence relation;
$$P_0=2P_0+5\implies a_n^p=-5$$
Substituting in (1);
$$a_n=c_12^n-5$$
Using $a_1=2$, we get $c_1=\frac{7}{2}$;
$$\boxed{a_n=(7)2^{n-1}-5}$$
$$OR$$
Use of generating functions is an alternate to getting to the closed form;
We start by assuming a function, say $Q(x)$ where,
$$Q(x)=\sum_{n=0}^{\infty} a_nx^n=a_0+a_1x+a_2x^2+\cdots$$
$$\,a_{n+1} = 2a_n + 5$$
Multiplying by $x^n$ and applying $\sum_{n=0}^{\infty}$ on the above relation;
$$\sum_{n=0}^{\infty} a_{n+1}x^n = 2\sum_{n=0}^{\infty}a_nx^n + 5\sum_{n=0}^{\infty}x^n$$
$$\frac{1}{x}(Q(x)-a_0) = 2Q(x)+ \frac{5}{1-x}$$
$$a_0=\frac{-3}{2}$$
$$Q(x)=\frac{-3}{2(1-2x)}+\frac{5x}{(1-x)(1-2x)}$$
Using Partial Fractions;
$$Q(x)=\frac{-3}{2(1-2x)}-\frac{5}{1-x}+\frac{5}{1-2x}$$
Putting in $$Q(x)=\sum_{n=0}^{\infty} a_nx^n$$
$$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^n$$
$$\frac{1}{1-2x}=\sum_{n=0}^{\infty} 2^nx^n$$
$$\sum_{n=0}^{\infty} a_nx^n=\frac{-3}{2}\sum_{n=0}^{\infty} x^n-5\sum_{n=0}^{\infty} x^n+5\sum_{n=0}^{\infty} 2^nx^n$$
Removing out the sum and $x^n$, we get
$$\boxed{a_n=(7)2^{n-1}-5}$$

- 2,474
Hint
$$a_n=b_n+k \quad \implies b_{n+1}=2b_n+(k+5)$$ Do you see what happens if you select $k=-5$ ?
Solve it for $b_n$, go back to $a_n$ and use the initial condition.

- 260,315
$a_3 = 23 = 2(2(2) + 5) + 5 = 2^3 + 2 \cdot 5 + 5$
$a_4 = 2(2(2(2) + 5) + 5) + 5 = 2^4 + 2^2 \cdot 5 + 2 \cdot 5 + 2^0 \times 5$
$a_n = 2^n + 2^{n - 2} \cdot 5 + ... + 2^1 \cdot 5 + 2^0 \cdot 5$
Proviso: Exclude negative exponents
$a_1 = 2^1 = 2$

- 951