5

What does $\int d^3 x $ mean?

I found this in a lecture on quantum field theory, and it was not explained.

Ben Grossmann
  • 225,327
kasperhj
  • 197

1 Answers1

2

In physics notation, it means a triple integral over the whole 3-dimensional space. An equation like: $$ \int d^3x\,f(x) $$

actually means: $$ \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y,z)\,dx\,dy\,dz. $$

For example, a 3-dimensional Fourier transform can be written as:

$$ \tilde{f}(p) = \int d^3x\,f(x)\,e^{-ip\cdot x}, $$

which means: $$ \tilde{f}(p_1, p_2,p_3) = \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y,z)\,e^{-ip_1x-ip_2y-ip_3z}\,dx\,dy\,dz. $$

It is a little unclear at first, but as you can see, it shortens the formulas a lot.

geodude
  • 8,065