I will change the question a bit for the sake of simplicity:
$$\nabla_\Sigma f(\Sigma)$$ for $$f(\Sigma) = \frac{1}{(2 \pi)^{\frac{d}{2}} \lvert \Sigma \rvert^{\frac{1}{2}}} e^{-\frac{1}{2} (x - \mu)^\intercal \Sigma^{-1} (x - \mu)}$$
becomes
$$\nabla_{\Sigma_{ij}} f(\Sigma) = \frac{1}{(2 \pi)^{\frac{d}{2}} } \underbrace{\nabla_{\Sigma_{ij}} \left( \frac{1}{\lvert \Sigma \rvert^{\frac{1}{2}}} \right)}_{(1)} e^{-\frac{1}{2} (x - \mu)^\intercal \Sigma^{-1} (x - \mu)} + \frac{1}{(2 \pi)^{\frac{d}{2}} \lvert \Sigma \rvert^{\frac{1}{2}}} \underbrace{\nabla_{\Sigma_{ij}} \left(e^{-\frac{1}{2} (x - \mu)^\intercal \Sigma^{-1} (x - \mu)}\right)}_{(2)}$$.
Let us go in parts:
(1) $\nabla_{\Sigma_{ij}} \left( \frac{1}{\lvert \Sigma \rvert^{\frac{1}{2}}} \right) = -\frac{1}{2} \frac{1}{\lvert \Sigma \rvert^{\frac{3}{2}}} \nabla_{\Sigma_{ij}} \lvert \Sigma \rvert = -\frac{1}{2} \frac{1}{\lvert \Sigma \rvert^{\frac{3}{2}}} \lvert \Sigma \rvert (\Sigma^{-\intercal})_{ij}
= -\frac{1}{2} \frac{1}{\lvert \Sigma \rvert^{\frac{1}{2}}} ((\Sigma^{-1})^\intercal)_{ij}$
(2) $\nabla_{\Sigma_{ij}} \left(e^{-\frac{1}{2} (x - \mu)^\intercal \Sigma^{-1} (x - \mu)}\right) = -\frac{1}{2} e^{-\frac{1}{2} (x - \mu)^\intercal \Sigma^{-1} (x - \mu)} \nabla_{\Sigma_{ij}} (x - \mu)^\intercal \Sigma^{-1} (x - \mu) = -\frac{1}{2} e^{-\frac{1}{2} (x - \mu)^\intercal \Sigma^{-1} (x - \mu)} (x - \mu)^\intercal \left(\nabla_{\Sigma_{ij}} \Sigma^{-1}\right) (x - \mu)$
This is where it gets messy, since $\nabla_{\Sigma_{ij}} (\Sigma^{-1})_{kl} = (\Sigma^{-1})_{ik} (\Sigma^{-1})_{jl}$. I will stop for now, and wait for your feedback.