Find the value of $\lim_{n \to \infty} \frac{(n!)^{\frac{1}{n}}}{n}$
I found a solution here which says: $\lim _{n \rightarrow \infty} \frac{(n !)^{\frac{1}{n}}}{n}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n !}{n^n}}=\lim _{n \rightarrow \infty} \sqrt[n]{a_n}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_n}=\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^n}=\frac{1}{e}$ My query is how they got $\lim _{n \rightarrow \infty} \sqrt[n]{a_n}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_n}$. I get that they took $a_n = n!/n^n$, but how does that correspond to $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_n}$?