$$ I = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{8\sin x-\sin2x}{x}dx $$ Options:
$(a) \frac{\pi}{2} <I< \frac{3\pi}{4}$
$(b) \frac{\pi}{5}<I<\frac{5\pi}{12}$
$(c) \frac{5\pi}{12}<I<\frac{\sqrt{2}\pi}{3}$
$(d) \frac{3\pi}{4}<I<\pi$
I tried:
Method 1
$I = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{8\sin x-\sin2x}{x}dx $
$I = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{8\sin x-\sin ax}{x}dx $
$\frac{dI}{da} = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} -\frac{x\cos(ax)}{x} dx $
$\frac{dI}{da}= -\frac{1}{a}[\sin (\frac{\pi}{3}a)-\sin (\frac{\pi}{4}a)]$
Method 2
Using Maclaurin Series: $\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}+...$ $\sin 2x=2x-\frac{(2x)^3}{3!}+\frac{(2x)^5}{5!}+...$
Now plugging values
$I = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{8(x-\frac{x^3}{3!}+\frac{x^5}{5!}+...)-(2x-\frac{(2x)^3}{3!}+\frac{(2x)^5}{5!}+...)}{x}dx $
$I = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} {8(1-\frac{x^2}{3!}+\frac{x^4}{5!}+...)-(2-\frac{(2)^3x^2}{3!}+\frac{(2)^5x^4}{5!}+...)}dx $
lengthy approximation :(