0

I want to prove the following
$$\sum_{k=0}^{n}\frac{\binom{n}{k}}{k+1}=\frac{2^{n+1}-1}{n+1}$$ I need some hint how to start.
thanks!

Ofir Attia
  • 3,136

2 Answers2

5

Following your hint to introduce integrals we have $$\sum_{k=0}^n \frac{1}{k+1} \binom{n}{k} = \sum_{k=0}^n \binom{n}{k} \int_0^1 x^k dx$$ which is $$\int_0^1 \sum_{k=0}^n \binom{n}{k} x^k dx = \int_0^1 (x+1)^n dx = \left. \frac{(x+1)^{n+1}}{n+1} \right|_0^1 = \frac{2^{n+1}-1}{n+1}.$$

Marko Riedel
  • 61,317
1

HINT: Multiply both sides by $n+1$, and note that $$\frac{n+1}{k+1}\binom{n}k=\binom{n+1}{k+1}\;.$$

Brian M. Scott
  • 616,228