In a short presentation on RG, that is A Mesmerizing Integral Representation of $ζ^2(3)$ by C. I. Valean, we have, if I'm allowed, the following intriguing integral representation of $\zeta^2(3)$,
$$\zeta^2(3)$$ $$\small =\frac{32}{5} \int_0^1\left(2 \Re\left\{\text{Li}_3\left(\frac{1-x^2}{1+x^2}+i\frac{ 2 x}{1+x^2}\right)\right\}-\text{Li}_3\left(\frac{1}{1+x^2}\right)\right)\frac{\log (1-x) \log (1+x)}{x} \textrm{d}x.$$
The proof flows as follows: using that $\displaystyle \int_0^1 \frac{y\log(1-y)\log(1+y)}{x^2+y^2}\textrm{d}y=-\frac{3}{8}\zeta(3)+\frac{1}{4}\operatorname{Li}_3\left(\frac{1}{1+x^2}\right)-\frac{1}{2}\Re\biggr\{\operatorname{Li}_3\left(\frac{1-x^2}{1+x^2}+i\frac{2x}{1+x^2}\right)\biggr\}=-\frac{3}{8}\zeta(3)+\frac{1}{4}\operatorname{Li}_3(\cos^2(\theta))-\frac{1}{2}\sum_{n=1}^{\infty} \frac{\cos(2n\theta)}{n^3}, \ x=\tan(\theta), \theta \in \left(-\frac{\pi}{2},\frac{\pi}{2}\right)$, given in More (Almost) Impossible Integrals, Sums, and Series (2023), page $4$, together with the fact that $\displaystyle \int_0^1 \frac{\log (1-x) \log (1+x)}{x}\textrm{d}x=-\frac{5}{8}\zeta(3)$, also found (Almost) Impossible Integrals, Sums, and Series (2019), we have $$\frac{32}{5} \int_0^1\left(2 \Re\left\{\text{Li}_3\left(\frac{1-x^2}{1+x^2}+i\frac{ 2 x}{1+x^2}\right)\right\}-\text{Li}_3\left(\frac{1}{1+x^2}\right)\right)\frac{\log (1-x) \log (1+x)}{x} \textrm{d}x$$ $$=-\frac{32}{5} \int_0^1\left(\frac{3}{2}\zeta(3)+4\int_0^1 \frac{y\log(1-y)\log(1+y)}{x^2+y^2}\textrm{d}y\right)\frac{\log (1-x) \log (1+x)}{x} \textrm{d}x$$ $$=6\zeta^2(3)-\frac{128}{5} \int_0^1 \left( \int_0^1 \frac{y \overbrace{\log (1-x) \log (1+x)}^{\displaystyle f(x)} \overbrace{\log(1-y)\log(1+y)}^{\displaystyle f(y)}}{x(x^2+y^2)}\textrm{d}y\right)\textrm{d}x$$ $$\small=6\zeta^2(3)-\frac{128}{5} \int_0^1 \left( \int_0^1 \frac{y f(x) f(y)}{x(x^2+y^2)}\textrm{d}y\right)\textrm{d}x\overset{\substack{\text{use } \\ \text{the symmetry}}}{=}6\zeta^2(3)-\frac{128}{5} \int_0^1 \left( \int_0^1 \frac{x f(x) f(y)}{y(x^2+y^2)}\textrm{d}y\right)\textrm{d}x$$ $$\small=6\zeta^2(3)-\frac{64}{5} \int_0^1 \left( \int_0^1 \left(\frac{y}{x}+\frac{x}{y}\right) \frac{ f(x) f(y)}{x^2+y^2}\textrm{d}y\right)\textrm{d}x=6\zeta^2(3)-\frac{64}{5}\int_0^1 \frac{f(x)}{x}\left( \int_0^1 \frac{f(y) }{y}\textrm{d}y\right)\textrm{d}x$$ $$\small=6\zeta^2(3)-\frac{64}{5}\left(\int_0^1 \frac{\log(1-x)\log(1+x)}{x} \textrm{d}x\right)^2=\zeta^2(3),$$ which gives an end to the present proof.
Question $1$: Do we have in the mathematical literature challenging integrals with a similar structure of the integrand involving parts like $\displaystyle \text{Li}_n\left(\frac{1-x^2}{1+x^2}+i\frac{ 2 x}{1+x^2}\right), n\ge 2$? Any links or references would be highly appreciated.
Question $2$: I would love to see different approaches to this integral, this time not for the sake of seeing more proofs, but out of the curiosity of possible interesting and subtle connections with integrals and series that are out of my sight at the moment. Therefore, even some unfinished solutions could be very interesting.
Update $1$: Another very nice version presented by the same author is
$$\zeta^2(3)$$ $$=\frac{32}{19} \int_0^1 \biggr(\Re\left\{\operatorname{Li}_3\left(\frac{1-x^2}{1+x^2}+i\frac{ 2 x}{1+x^2}\right)\right\}\left(\log ^2(1-x)+\log ^2(1+x)\right)$$ $$-\operatorname{Li}_3\left(\frac{1}{1+x^2}\right) \log (1-x) \log (1+x)\biggr)\frac{1}{x} \textrm{d}x,$$
which combines the previous result and the particular case of a result given in More (Almost) Impossible Integrals, Sums, and Series (2023).
$$\Im \text{Li}{2n}\left(\frac{1-x^2}{1+x^2}+i\frac{ 2 x}{1+x^2}\right) = \text{Cl}{2n}\left(2\arctan x\right)$$
$$\Re \text{Li}{2n+1}\left(\frac{1-x^2}{1+x^2}+i\frac{ 2 x}{1+x^2}\right) = \text{Cl}{2n+1}\left(2\arctan x\right)$$
Here is one example of such integral (squared).
– Zacky Feb 08 '24 at 11:57