$$a_1 = \frac32\quad\text{and}\quad\forall n \ge 2,\quad a_n = \frac{3na_{n-1}}{2a_{n - 1} +n - 1}.$$
- Get $a_n$
- Prove: $$\forall n \in\Bbb N,\quad a_1a_2\dots a_n < 2\cdot n!$$
Here is what I have gone so far:
$$a_n = \frac{n3^n}{3^n - 1}$$
But I do not know how to prove the question 2.
I found that it is equivalent to proving:
$$ \left(1-\frac13\right)\left(1-\frac1{3^2}\right)\dots\left(1-\frac1{3^n}\right)> \frac12. $$