From the definition of the polylogarithm, you directly get the recursion $\int_{0}^{z}\frac{\mathrm{Li}_s(t)}{t}\mathrm{d}t = \mathrm{Li}_{s+1}(z)$. Also using that
$\mathrm{Li}_2(x) +\mathrm{Li}_2\left(\frac{x}{x-1}\right) = - \frac{\ln^2(1-x)}{2}$ we get
\begin{align*}
\int_{0}^{1}\frac{\mathrm{Li}_2\left( \frac{x}{x-1}\right)}{x}\,\mathrm{d}x & = - \int_{0}^{1}\frac{\mathrm{Li}_2(x)}{x}\,\mathrm{d}x -\frac12 \int_{0}^{1}\frac{\ln^2(1-x)}{x}\,\mathrm{d}x = -\mathrm{Li}_3(1)-\frac12 \int_{0}^{1}\frac{\ln^2(1-x)}{x}\,\mathrm{d}x
\end{align*}
and since $\int_{0}^{1}\frac{\ln^2(1-x)}{x}\,\mathrm{d}x = 2\zeta(3)$, combining this with $\mathrm{Li}_s(1) = \zeta(s)$ (which is easily seen from the series definition) we get
$$
\int_{0}^{1}\frac{\mathrm{Li}_2\left( \frac{x}{x-1}\right)}{x}\,\mathrm{d}x =-\zeta(3) - \frac{2\zeta(3)}{2} =-2\zeta(3)
$$
Similarlly, since plugging $x \to -x$ in the dilogarithm formula gives $\mathrm{Li}_2(-x) +\mathrm{Li}_2\left(\frac{x}{x+1}\right) = - \frac{\ln^2(1+x)}{2}$, so
$$
\int_{0}^{1}\frac{\mathrm{Li}_2\left( \frac{x}{x+1}\right)}{x}\,\mathrm{d}x = - \int_{0}^{1}\frac{\mathrm{Li}_2(-x)}{x}\,\mathrm{d}x -\frac12 \int_{0}^{1}\frac{\ln^2(1+x)}{x}\,\mathrm{d}x \overset{\color{blue}{x\to -x}}{=} -\mathrm{Li}_3(-1) - \frac12 \int_{0}^{1}\frac{\ln^2(1+x)}{x}\,\mathrm{d}x
$$
Recalling that $\mathrm{Li}_s(-1) = \left(2^{1-s}-1\right)\zeta(s) $ and that $\int_{0}^{1}\frac{\ln^2(1+x)}{x}\,\mathrm{d}x = \frac{\zeta(3)}{4}$ we get
$$
\int_{0}^{1}\frac{\mathrm{Li}_2\left( \frac{x}{x+1}\right)}{x}\,\mathrm{d}x = \frac{3\zeta(3)}{4} -\frac{\zeta(3)}{8} = \frac{5\zeta(3)}{8}
$$
so subtracting the $2$ integral evaulations gives
$$
\boxed{\int_{0}^{1}\frac{\mathrm{Li}_2\left( \frac{x}{x-1}\right)-\mathrm{Li}_2\left( \frac{x}{x+1}\right)}{x}\,\mathrm{d}x = -\frac{21\zeta(3)}{8}}
$$
We know that $\mathrm{Li}_1(z) = -\ln(1-z)$ comparing with the Taylor series for the natural log.
Noticing that
$\int_{0}^{x} \frac{\mathrm{Li}_s\left(\frac{t}{t-1}\right)}{t(1-t)}\mathrm{d}{t} \overset{\color{purple}{t\to\frac{t}{t-1}}}{=} \int_{0}^{\frac{x}{x-1}}\frac{\mathrm{Li}_s(t)}{t}\mathrm{d}{t} {=} \mathrm{Li}_{s+1}\left(\frac{x}{x-1}\right)
$. This gives
\begin{align}
\mathrm{Li}_2(x) +\mathrm{Li}_2\left(\frac{x}{x-1}\right) & = \int_{0}^{x} \frac{\mathrm{Li}_1(t)}{t}\mathrm{d}{t} + \int_{0}^{x} \frac{\mathrm{Li}_1(\frac{t}{t-1})}{t(1-t)}\mathrm{d}{t} \notag \\
& = \int_{0}^{x} -\frac{\ln(1-t)}{t} + \frac{\ln(1-t)}{t(1-t)}\mathrm{d}{t}\notag \\
&= - \frac{\ln^2(1-x)}{2}
\end{align}
obtaining the formula given at the beginning.