Yesterday i searched on internet hard integrals, the Question is one of them.i forgot the source(book) of the question
\begin{align} I &= \int_{0}^{1}\frac{\arctan^2(x)\log(1-x)}{1+x^2}\,dx \end{align}
\begin{align} u &= \arctan^2(x) \quad \Rightarrow \quad du = 2\arctan(x)\frac{1}{1+x^2}dx \ dv &= \frac{\log(1-x)}{1+x^2}dx \quad \Rightarrow \quad v = \int \frac{\log(1-x)}{1+x^2}dx \end{align}
Now integration by parts
\begin{align} I &= \arctan^2(x)\int \frac{\log(1-x)}{1+x^2}dx - \int \left(2\arctan(x)\frac{1}{1+x^2}\right)\left(\int \frac{\log(1-x)}{1+x^2}dx\right)dx \ &= \arctan^2(x)v - 2\int \frac{\arctan(x)}{1+x^2} \left(\int \frac{\log(1-x)}{1+x^2}dx\right)dx \end{align}