Here is the problem I am trying to solve:
Prove that the polynomial $p(x) = x^4 - 4x^2 + 8x + 2$ is irreducible over the quadratic field $F = \mathbb Q(\sqrt{-2}) = \{ a + b\sqrt{-2}\,|\, a,b \in \mathbb Q\}.$
I have seen many links here to its solution as you can see below:
Clarification regarding hint given for showing $p(x)$ is irreducible over $\mathbb{Q}(\sqrt{-2})$.
But no-one of these links answered the following question:
why if I proved it for $\mathbb Q[\sqrt{-2}],$ it will be correct for $\mathbb Q(\sqrt{-2}),$?
Could anyone clarify the answer of this question to me please?