Suppose two $X,Y$ are random variables defined on $(\Omega,\mathscr{F},\mathbf{P})$ and $f:\mathbb{R}^2\rightarrow\mathbb{R}$ is a measurable function. Does this $[f(X,Y)]^{-1}(\mathscr{B}(\mathbb{R}))\subset \sigma(Y) $ hold true?
Since $f$ is a measurable,$$\forall B\in\mathscr{B}(\mathbb{R}),f^{-1}(B):= \left\{(x,y):f(x,y)\in B \right\}\in \mathscr{B}(\mathbb{R^2}).\Longrightarrow C:=\left\{\omega:(X,Y)\in f^{-1}(B) \right\}\in \mathscr{F}.$$
Let $\pi_{y}:\mathbb{R}^2\mapsto \mathbb{R},(x,y)\mapsto y.$ $$C \subset \left\{\omega:(X,Y)\in \pi_{y}^{-1}(\pi_{y}(f^{-1}(B)))\right\}.$$ But we can't guarantee that $\pi_{y}(f^{-1}(B))\in \mathscr{B(\mathbb{R}}).$
Add: I just find this post offers a more comprehensive exploration of the mentioned topic.