I'm studying a problem from linear algebra:
For a bilinear form $b: V \times V$ and a subvector space $U $ in $ V $ we set $ U^{\perp}:=\{v \in V \mid b(u, v)=0 \text { for all } u \in U\} . $ Now let $ A=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$. We consider the bilinear form $ b: \mathbb{R}^{2} \times \mathbb{R}^{2} \longrightarrow \mathbb{R}, \quad(x, y) \mapsto x^{t} A y $ Prove or disprove (by giving a counterexample): For every $ \mathbb{R} $ subvector space $U $ in $ \mathbb{R}^{2}$ we have $ \left(U^{\perp}\right )^{\perp}=U$.
This should be correct because we just deal with finite dimensional vector spaces.
Here is my proof:
Let $ u \in U $ with $\langle u, w\rangle =0 \quad \forall w \in U^{\perp},$ so $ u \in U^{\perp \perp} $.
Consequently $ U \subseteq U^{\perp \perp} $.
Since we know that V is the direct sum of $U$ and $U^{\perp}$: $\operatorname{dim}(U) = \operatorname{dim}(V)-\operatorname{dim}\left(U^{\perp}\right) =\operatorname{dim}(V)-\left(\operatorname{dim}(V)-\operatorname{dim}\left(U^{\perp \perp}\right)\right)=\operatorname{dim} \left(U^{\perp \perp}\right),$ it follows $U=U^{\perp \perp}$.
But I want to use the example given in the task
– Marius Lutter Oct 05 '23 at 14:18